
분산딥러닝오픈소스소프트웨어
프레임워크비교

(TensorFlow,	CNTK,	Petuum,	MxNet)

Gunhee Kim

1

Computer Science and Engineering

August 25, 2016



Deep	Learning	Open	Source	
Frameworks

2

And	many	
more	…

https://www.tensorflow.org http://www.petuum.com/ http://mxnet.io/

https://www.cntk.ai/ https://github.com/amplab/SparkNet



• Poseidon 
• Introduction to Petuum
• Distributed Wait-free Backpropagation
• Structure-Aware Message Passing Protocol
• Staleness Consistency

• CNTK
• 1-bit SGD
• Block Momentum

Outline

3



Distributed	ML:	one	machine	to	many

• Setting:	have	iterative,	parallel	ML	algorithm
– E.g.	optimization,	MCMC	algorithms
– For	topic	models,	regression,	matrix	factorization,	
DNNs,	etc

• Critical	updates	executed	on	one	machine,	in	
parallel
– Worker	threads	share	global	model	parameters	𝜃
via	RAM

4
(Credits:	Q.	Ho’s	NIPS	13	slides)



Distributed	ML:	one	machine	to	many

• Want:	scale	up	by	distributing	ML	algorithm
– Must	now	share	parameters	over	a	network

• Seems	like	a	simple	task…
– Many	distributed	tools	available,	so	just	pick	one	
and	go?

5

Single	machine,
multiple	threads Multiple	machines,

communicating	over
network	switches



Distributed	ML	Challenges

• Not	quite	that	easy…
• Two	distributed	challenges:

– Networks	are	slow
– “Identical”	machines	rarely	perform	equally

6

Unequal
performance

Low	bandwidth,
High	delay



Networks	are	(relatively)	slow
• Low	network	bandwidth:

– 0.1-1GB/s	(inter-machine)	vs	≥ 20GB/s	(CPU-RAM)
– Fewer	parameters	transmitted	per	second

• High	network	latency	(messaging	time):
– 10,000-100,000	ns	(inter-machine)	vs	100	ns	(CPU-RAM)
– Wait	much	longer	to	receive	parameters

7



Networks	are	(relatively)	slow

• Parallel	ML	requires	frequent	synchronization
– Exchange	10-1000K	scalars	per	second,	per	thread
– Parameters	not	shared	quickly	enough	à
communication	bottleneck

• Significant	bottleneck	over	a	network!

8



Machines	don’t	perform	equally
• Even	when	configured	identically
• Variety	of	reasons:

– Vibrating	hard	drive
– Background	programs;	part	of	a	distributed	filesystem
– Other	users
– Machine	is	a	VM/cloud	service

• Occasional,	random	slowdowns	in	different	
machines

9



Parallelization	Strategies

10
(Credits:	Eric	Xing’s	WWW	15	slides)



Petuum Overview

• A	distributed	ML	framework
– Speeds	up	ML	via	data-,	model-parallel	insights
– https://petuum.github.io/

• Key	modules

11



Intrinsic	Properties	of	ML	Programs
• ML	is	optimization-centric,	and	admits	an	
iterative	convergent	algorithmic	solution	rather	
than	a	one-step	closed	form	solution

– 𝐷:	data,	ℒ:	loss	
– ∆ℒ():	update	function	performs	computation	on	data	
𝐷 and	model	state	𝐴

– Examples:	(i)	SGD	and	coordinate	descent	for	fixed-
point	in	optimization,	(ii)	MCMC	and	variational
methods	for	graphical	models,	(iii)	proximal	
optimization	and	ADMM	for	structured	sparsity	
problems,	among	others

12

𝐴()) = 𝐹(𝐴 ),- , ∆ℒ(𝐴 ),- , 𝐷)



Intrinsic	Properties	of	ML	Programs

• Iterative	convergent	algorithms
– Error	tolerance:	often	robust	
against	limited errors	in	
intermediate	calculations

– Dynamic	structural	dependency:	
changing	correlations	between	
model	parameters	critical	to	
efficient	parallelization

– Non-uniform	convergence:	
parameters	can	converge	in	very	
different	number	of	steps 13



B�̈�sen:	Parameter	server	for	data-
parallelizm

• A	bounded-asynchronous	distributed	key-value	
store
– Data-parallel	programming	via	distributed	shared	
memory	(DSM)	abstraction

– Managed	communication	for	better	parallel	efficiency	
&	guaranteed	convergence

14



Strads:	Scheduler	for	model-
parallelizm

• A	structure-aware	load-balancer	and	task	prioritizer
– Model-parallel	programming	via	a	scheduler	interface
– Explore	structural	dependencies	and	non-uniform	
convergence	within	ML	models	for	best	execution	order

15

Master Master Master Parameter
server

Parameter
server

Parameter
server

Worker Worker Worker Worker Worker Worker Worker

Schedule

Var/Param
R/W

Push Pull
Var/Param

R/W



Poseidon
• Scalable	open-source	framework	for	large-scale	
distributed	deep	learning	on	CPU/GPU	clusters

• http://www.petuum.com/poseidon.html
• Builds	upon

• Maximize	the	speedup	with	a	fully	data	parallel	
scheme	for	distributed	deep	learning

16

(http://petuum.github.io/) (http://caffe.berkeleyvision.org/)



Overview:	A	Three-level	Structure

• Server-client	+	multiple	client	threads
• Peer-to-peer	+	server-client	communication

17

Abstraction	of	iterative-convergent	
algorithm	in	a	data	parallel	setting

Overview	of	distributed	
architecture	of	Poseidon



Distributed	Wait-free	Backpropagation	

• Original	BP
– Backpropagation	followed	by	feedforward
– Start	communication	when	BP	reaches	𝑙-
– Worker	cannot	proceed	until	communication	finished

18

𝐸-…4 ∶ error	message
𝐴 = 𝐴6 67-4 :	layer	parameters
𝛻𝐴9 = 𝛻𝐴:

9
67-
4

:	parameter	updates



Distributed	Wait-free	Backpropagation

19

• DWBP
– Each	layer	𝑙6 do	not	affect	upper	layers	{𝑙6<-, … , 𝑙4}
– Concurrently	scheduled	computations	of	lower	layers
and	communications	of	upper	layers during	BP

𝐸-…4 ∶ error	message
𝐴 = 𝐴6 67-4 :	layer	parameters
𝛻𝐴9 = 𝛻𝐴:

9
67-
4

:	parameter	updates



Structure-Aware	Message	Passing	Protocol

20

• Sufficient	Factor	Broadcasting	(SFB)
– Parameters	are	in	a	matrix	form	
– Decompose	the	parameter	matrix	into	two	vectors

• Structure-aware	Communication	Protocol	
(SACP)
– Hybridizes	the	client-server	PS	scheme	with	the	
P2P	scheme



Sufficient	Factor	Communication	(SFB)

21

• CNN	represents	parameters	as	a	set	of	matrices
• Parameters	in	FC	layers	exceed	bandwidth	of	
the	network

• Sufficient	factors	can	reduce	#	of	parameters
to	be	communicated

𝛻𝑊 = 𝑢𝑣A
Sufficient	Factors



Sufficient	Factor	Communication	(SFB)

22

(1) Decouple	𝛻𝑊9 into	two	vectors	𝑢9 and	𝑣9
(2) Broadcast	𝑢9 and	𝑣9 to	all	other	peer	workers	and	

receive
(3) Reconstruct	 𝛻𝑊6 67-

B using	 𝑢6, 𝑣6 67-B and	updates.

Pengtao Xie,	et	al.	“Distributed	Machine	Learning	via	Sufficient	
Factor	Broadcasting." arXiv preprint	arXiv:1409.5705v2 (2015).



Sufficient	Factor	Communication	(SFB)

23

• During	BP,	in	each	layer
– (gradient)	=	(error	message)	(activation)

• Broadcast	the	two	decomposed	vectors	to	
all	other	peer	workers

𝛻𝑊 =
𝜕ℒ
𝜕𝑊 = 𝐸6<-𝑎6A



Sufficient	Factor	Communication	(SFB)

24

• Compared	to	traditional	server-client	on	FC	layer

– 7.1	times	faster	than	server-client,	since	P,K	<<	M,N	in	
modern	CNN

• Compared	to	Microsoft	Adam	on	FC	layer

– Adam	employs	SF	with	server-client	scheme
– 4	times	faster	than	Microsoft	Adam

P	:	#	of	workers
K	:	batch	size
M,	N	:	size	of	matrix

(P-1)2K(M+N)		vs		2PMN
SFB Server-client

(P-1)2K(M+N)		vs		PK(M+N)+PMN
SFB Microsoft	Adam



Structure-aware	Communication	Protocol

25

• Intelligently	determines	optimal	communication	
method

Server-client

SFB

Microsoft	Adam



Staleness	Consistency	for	Data-
Parallelism

26

• Make	parameter	update	consistent	across	the	
machines

• Existing	ways	are	either	safe/slow	(BSP),	or	
fast/risky	(Async)

• Need	“Partial”	synchronicity
• Need	straggler	tolerance

Ho,	Qirong,	et	al.	"More	effective	distributed	ml	via	a	stale	synchronous	parallel	
parameter	server." Advances	in	neural	information	processing	systems.	2013.

BSP Async

???



Middle	Ground

27

• “Partial”	synchronicity
– Spread	network	comms evenly	(don’t	sync	unless	needed)
– Threads	shouldn’t	wait	– but	mustn’t	drift	too	far	apart!

• Straggler	tolerance
– Slow	threads	must	somehow	catch	up

(Credits:	Q.	Ho’s	NIPS	13	slides)



Middle	Ground

28
(Credits:	Q.	Ho’s	NIPS	13	slides)

How	do	we	realize	this?



Stale	Synchronous	Parallel	(SSP)
• Note:	x-axis	is	now	iteration	count,	not	time!
• Fastest/slowest		threads	not	allowed	to	drift	>S	
iterations	apart

• Threads	cache	local	(stale)	versions	of	the	
parameters,	to	reduce	network	syncing

29



Stale	Synchronous	Parallel	(SSP)
• Protocol:	check	cache	first;	if	too	old,	get	latest	
version	from	network

• Consequence:	fast	threads	must	check	network	
every	iteration
– Slow	threads	only	check	every	S	iterations	– fewer	
network	access,	so	catch	up!

30



SSP	provides	best-of-both-worlds
• SSP	combines	best	properties	of	BSP	and	Async

• BSP-like	convergence	guarantees
– Threads	cannot	drift	more	than	S	iterations	apart

• Asynchronous-like	speed
– Threads	usually	don’t	wait	(unless	there	is	drift)

• SSP	is	a	spectrum	of	choices
– Can	be	fully	synchronous	(S=0)	or	very	asynchronous	
(Sà∞)

– Or	just	take	the	middle	ground,	and	benefit	from	both!

31



BWBP	+	SACP	+	SSP

32



Evaluation

• Cluster	Configuration
– 4	x	16	core	2.1GHz	AMD	Operation	6272	CPUs
– 128	GB	of	RAM
– NVIDIA	Tesla	K20C	GPU	with	4799MB	memory
– 40GBe	network	for	connecting	NFS	and	workers
– Caffe with	CUDA	6.5	and	CUDNN	R2

• Datasets
– CIFAR-10
– ILSVRC2012	(AlexNet and	GoogleNet)
– ImageNet	22k	(with	other	frameworks)

33



Classification	on	CIFAR-10
• 32	x	32	images	of	10	classes,	with	6K	images	per	class
• 3	CONV	+	1	FC	+	Softmax,	total	145,578	parameters
• 8	GPU	nodes

34

4x	Speedup 75%	top-1	accuracy



Classification	on	ILSVRC	2012	with	
AlexNet

• 256	x	256	x	3	images	of	1k	classes,	total	1.3M	images
• 5	CONV	+	2	FC	+	Softmax,	total	61.3M	parameters
• 8	GPU	nodes

35

4.5x	Speedup 56.5%	top-1	accuracy



Classification	on	ILSVRC	2012	with	
GoogLeNet

• 256	x	256	x	3	images	of	1k	classes,	total	1.3M	images
• 22-layer	CNN,	total	5M	parameters
• 8	GPU	nodes

36

4x	Speedup 67.1%	top-1	accuracy



Classification	on	ImageNet	22k
• 14,197,087	labeled	images	from	21,841	categories
• AlexNet-like	CNN:	5	CONV	+	2	FC,	total	120M	
parameters

• 7.9%	higher	performance compared	to	Le	et	al.’s	
framework

37



DWBP	and	SACP

• Set	staleness	to	0	(i.e.	BSP)
• More	loss	when	increasing	the	number	of	nodes

38



SSP	Consistency	Model

39



Conclusion

• Present	Poseidon,	a	highly	scalable	and	efficient	
system	architecture	for	large-scale	deep	learning	
on	GPU	clusters.

• Poseidon	achieves	state-of-the-art	speedups	in	
accelerating	the	training	of	modern	CNN	
structures,	at	the	same	time	guarantee	the	
correct	convergence

40



• Poseidon 
• Introduction to Petuum
• Distributed Wait-free Backpropagation
• Structure-Aware Message Passing Protocol
• Staleness Consistency

• CNTK
• 1-bit SGD
• Block Momentum

Outline

41



Data	Parallel	Training
• Data-parallelism

– Distribute	each	mini-batch	over	workers,	then	aggregate
• Challenge

– Communication	cost
– Optimal	iff computation	and	communication	time	per	
mini-batch	is	equal	(assuming	overlapped	processing)

42



Data	Parallel	Training

• Two	approaches	
– Focusing	on	communication	than	computation
– Communicate	less	
– Communicate	less	often

43



Data	Parallel	Training

• Two	approaches	
– Focusing	on	communication	than	computation
– Communicate	less	→	1-bit	SGD
– Communicate	less	often

44



A	Key	Idea	of	1-Bit	SGD

• Inspired	by	Sigma-Delta	modulation	
– A	method	for	encoding	analog	signals	into	digital	
signals	using	only	a	single	1-bit DAC

– http://www.analog.com/en/design-center/interactive-
design-tools/sigma-delta-adc-tutorial.html

45



A	Key	Idea	of	1-Bit	SGD

• Transmit	a	single-bit	update	for	each	
subgradient dimension
– e.g.	Instead	of	𝐺 = −.1, 0.3, … , 0.2 ,	use	𝐺 =
{−𝜏, 𝜏, … , 𝜏}

46

0 5 10 15 20 25 30 35

1-bit

float

Transferred	Gradient	(bits/value),	smaller	is	better



A	Pseudo	Code	of	a	Mini-batch	cycle	in	
a	Single	Node	in	Distributed	SGD

47

1.	Receive	and	uncompress any	weight	update	messages	from	other	
compute	nodes	and	apply	them	to	the	local	replica	of	the	DNN
2.	Load	feature	vectors	and	supervision	targets	for	a	mini-batch
3.	Compute	a	sub-gradient	𝐺(N) by	Back-Propagation
4.	Aggregate	the	sub-gradient	in	the	gradient	residual	𝐺(O) = 𝐺(O) + 𝐺(N)
5.	Reset	the	message	map	𝑀
6.	For	each	element	𝑔6(O) of	𝐺(O):

• If	𝑔6(O) > 𝜏 then
• push	the	pair	{𝑖, +𝜏} to	the	message	𝑀
• Subtract	𝜏 from	residual:	𝑔6(O) = 𝑔6(O) − 𝜏

• Else	if	𝑔6(O) < 𝜏 then
• push	the	pair	{𝑖, −𝜏} to	the	message	𝑀
• Add	𝜏 to	the	residual:	𝑔6(O) = 𝑔6(O) + 𝜏

7.	Compress	𝑀 and	send	to	all	other	compute	nodes
8.	Apply	𝑀 to	the	local	replica	of	the	DNN

Strom,	Nikko.	"Scalable	
distributed	dnn	training	
using	commodity	gpu	
cloud	computing."	
INTERSPEECH 2015.



Data	Parallel	Training

• Two	approaches	
– Communicate	less	→	1-bit	SGD
– Communicate	less	often	→	Block	Momentum

49



Block	Momemtum

• A	recent,	effective	parallelization	method
• Goal:	avoid	to	communicate	after	every	mini-
batch
– Run	a	block	of	many	mini-batches	without	
synchronization

– Then	exchange	and	update	with	“block	gradient”
• Problem:	taking	such	a	large	step	causes	
divergence

50



51

cost

parameter space

Very slow at 
the plateau

Gradient 
is small

Stuck at 
local minima

Gradient
is zero

Without momentum With momentum

(Credits: Hung-yi Lee’s More Tips for Training Neural Network)

Gradient	Descent	with	Momentum



52

Movement

Gradient

…

∇C(θ 0 )

∇C(θ1)
∇C(θ 2 )

∇C(θ 3)

θ 0

θ1

θ 2

θ 3

Start at position 𝜃^

Compute gradient at 𝜃^

Move to 𝜃- = 𝜃^ − η𝛻𝐶(𝜃^)

Compute gradient at 𝜃-

Move to 𝜃a = 𝜃- − η𝛻𝐶(𝜃-)

Original	Gradient	Descent



53

Movement

Gradient

∇C(θ 0 )

θ 0 ∇C(θ1)

θ1 ∇C(θ 2 )

θ 2

∇C(θ 3)

θ 3

…

Start at position 𝜃^

Compute gradient at 𝜃^

Momentum 𝑣- = λ𝑣^ − η𝛻𝐶(𝜃^)

Compute gradient at 𝜃-

Momentum 𝑣^ = 0

Move to 𝜃- = 𝜃^ + 𝑣-

Momentum 𝑣a = λ𝑣- − η𝛻𝐶(𝜃-)

Move to 𝜃a = 𝜃- + 𝑣a

• vi is the weighted sum of all the previous gradient
(𝛻𝐶 𝜃^ , 𝛻𝐶 𝜃- ,⋯ , 𝛻𝐶 𝜃6,-

Gradient	Descent	with	Momentum



Gradient	Descent	with	Momentum

• A	form	of	accelerate	learning,	especially	in	the	
face	of	high	curvature,	small	but	consistent	
gradients,	or	noisy	gradients

54



Data	Partition

• Full	training	set	𝐷 is	partitioned	into	𝑀 non-
overlapping	blocks

• Each	block	is	partitioned	into	𝑁 non-
overlapping	splits

55



Blockwise Model-Update	Filtering	
(BMUF)

• Broadcast	a	global	model	𝑾f(𝑡 − 1) to	each	
worker

• Each	worker	computes	a	gradient	for	a	split.	If	
we	simply	aggregate	the	parameters	𝑾(𝑡) by	
N-averaging

• However,	in	the	parameter	server,	instead	of	
directly	using	𝑾(𝑡),	the	global	model	is	
updated	as	follows.	

56



Blockwise Model-Update	Filtering	
(BMUF)

• Compute	𝑮(𝑡) to	denote	the	model-update	
resulting	from	block	𝐷)

• Then	calculate	the	global-model	update	∆(𝑡)

• Finally,	the	global	model	update	is

57

𝑮 𝑡 = 𝑾 𝑡 −𝑾f(𝑡 − 1)

∆ 𝑡 = 𝜂)∆ 𝑡 + 𝜉)𝑮 𝑡 , 0 ≤ 𝜂) < 1, 𝜉) > 0

𝑾 𝑡 = 𝑾 𝑡 − 1 + ∆ 𝑡



Results

58
Frank	Seide,	“CNTK:	Microsoft's	Open-Source	Deep-Learning	Toolkit”,	Microsoft	Research	Faculty	Summit	2016



Reference
• 1-big	SGD

– F.	Seide et	al.	"1-bit	stochastic	gradient	descent	and	its	
application	to	data-parallel	distributed	training	of	
speech	DNNs."	INTERSPEECH	2014.

– N.	Strom	"Scalable	distributed	DNN	training	using	
commodity	GPU	cloud	computing."	INTERSPEECH	
2015.

• Block	momentum
– K.	Chen	and	Q.	Huo.	"Scalable	training	of	deep	
learning	machines	by	incremental	block	training	with	
intra-block	parallel	optimization	and	blockwise model-
update	filtering.”	ICASSP	2016.

60




