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Deep	Learning	Open	Source	
Frameworks
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And	many	
more	…

https://www.tensorflow.org http://www.petuum.com/ http://mxnet.io/

https://www.cntk.ai/ https://github.com/amplab/SparkNet



• Poseidon 
• Introduction to Petuum
• Distributed Wait-free Backpropagation
• Structure-Aware Message Passing Protocol
• Staleness Consistency

• CNTK
• 1-bit SGD
• Block Momentum

Outline
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Distributed	ML:	one	machine	to	many

• Setting:	have	iterative,	parallel	ML	algorithm
– E.g.	optimization,	MCMC	algorithms
– For	topic	models,	regression,	matrix	factorization,	
DNNs,	etc

• Critical	updates	executed	on	one	machine,	in	
parallel
– Worker	threads	share	global	model	parameters	𝜃
via	RAM
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(Credits:	Q.	Ho’s	NIPS	13	slides)



Distributed	ML:	one	machine	to	many

• Want:	scale	up	by	distributing	ML	algorithm
– Must	now	share	parameters	over	a	network

• Seems	like	a	simple	task…
– Many	distributed	tools	available,	so	just	pick	one	
and	go?
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Single	machine,
multiple	threads Multiple	machines,

communicating	over
network	switches



Distributed	ML	Challenges

• Not	quite	that	easy…
• Two	distributed	challenges:

– Networks	are	slow
– “Identical”	machines	rarely	perform	equally
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Unequal
performance

Low	bandwidth,
High	delay



Networks	are	(relatively)	slow
• Low	network	bandwidth:

– 0.1-1GB/s	(inter-machine)	vs	≥ 20GB/s	(CPU-RAM)
– Fewer	parameters	transmitted	per	second

• High	network	latency	(messaging	time):
– 10,000-100,000	ns	(inter-machine)	vs	100	ns	(CPU-RAM)
– Wait	much	longer	to	receive	parameters
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Networks	are	(relatively)	slow

• Parallel	ML	requires	frequent	synchronization
– Exchange	10-1000K	scalars	per	second,	per	thread
– Parameters	not	shared	quickly	enough	à
communication	bottleneck

• Significant	bottleneck	over	a	network!
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Machines	don’t	perform	equally
• Even	when	configured	identically
• Variety	of	reasons:

– Vibrating	hard	drive
– Background	programs;	part	of	a	distributed	filesystem
– Other	users
– Machine	is	a	VM/cloud	service

• Occasional,	random	slowdowns	in	different	
machines
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Parallelization	Strategies
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(Credits:	Eric	Xing’s	WWW	15	slides)



Petuum Overview

• A	distributed	ML	framework
– Speeds	up	ML	via	data-,	model-parallel	insights
– https://petuum.github.io/

• Key	modules
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Intrinsic	Properties	of	ML	Programs
• ML	is	optimization-centric,	and	admits	an	
iterative	convergent	algorithmic	solution	rather	
than	a	one-step	closed	form	solution

– 𝐷:	data,	ℒ:	loss	
– ∆ℒ():	update	function	performs	computation	on	data	
𝐷 and	model	state	𝐴

– Examples:	(i)	SGD	and	coordinate	descent	for	fixed-
point	in	optimization,	(ii)	MCMC	and	variational
methods	for	graphical	models,	(iii)	proximal	
optimization	and	ADMM	for	structured	sparsity	
problems,	among	others
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𝐴()) = 𝐹(𝐴 ),- , ∆ℒ(𝐴 ),- , 𝐷)



Intrinsic	Properties	of	ML	Programs

• Iterative	convergent	algorithms
– Error	tolerance:	often	robust	
against	limited errors	in	
intermediate	calculations

– Dynamic	structural	dependency:	
changing	correlations	between	
model	parameters	critical	to	
efficient	parallelization

– Non-uniform	convergence:	
parameters	can	converge	in	very	
different	number	of	steps 13



B�̈�sen:	Parameter	server	for	data-
parallelizm

• A	bounded-asynchronous	distributed	key-value	
store
– Data-parallel	programming	via	distributed	shared	
memory	(DSM)	abstraction

– Managed	communication	for	better	parallel	efficiency	
&	guaranteed	convergence
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Strads:	Scheduler	for	model-
parallelizm

• A	structure-aware	load-balancer	and	task	prioritizer
– Model-parallel	programming	via	a	scheduler	interface
– Explore	structural	dependencies	and	non-uniform	
convergence	within	ML	models	for	best	execution	order
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Poseidon
• Scalable	open-source	framework	for	large-scale	
distributed	deep	learning	on	CPU/GPU	clusters

• http://www.petuum.com/poseidon.html
• Builds	upon

• Maximize	the	speedup	with	a	fully	data	parallel	
scheme	for	distributed	deep	learning
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(http://petuum.github.io/) (http://caffe.berkeleyvision.org/)



Overview:	A	Three-level	Structure

• Server-client	+	multiple	client	threads
• Peer-to-peer	+	server-client	communication
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Abstraction	of	iterative-convergent	
algorithm	in	a	data	parallel	setting

Overview	of	distributed	
architecture	of	Poseidon



Distributed	Wait-free	Backpropagation	

• Original	BP
– Backpropagation	followed	by	feedforward
– Start	communication	when	BP	reaches	𝑙-
– Worker	cannot	proceed	until	communication	finished
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𝐸-…4 ∶ error	message
𝐴 = 𝐴6 67-4 :	layer	parameters
𝛻𝐴9 = 𝛻𝐴:

9
67-
4

:	parameter	updates



Distributed	Wait-free	Backpropagation
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• DWBP
– Each	layer	𝑙6 do	not	affect	upper	layers	{𝑙6<-, … , 𝑙4}
– Concurrently	scheduled	computations	of	lower	layers
and	communications	of	upper	layers during	BP

𝐸-…4 ∶ error	message
𝐴 = 𝐴6 67-4 :	layer	parameters
𝛻𝐴9 = 𝛻𝐴:

9
67-
4

:	parameter	updates



Structure-Aware	Message	Passing	Protocol
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• Sufficient	Factor	Broadcasting	(SFB)
– Parameters	are	in	a	matrix	form	
– Decompose	the	parameter	matrix	into	two	vectors

• Structure-aware	Communication	Protocol	
(SACP)
– Hybridizes	the	client-server	PS	scheme	with	the	
P2P	scheme



Sufficient	Factor	Communication	(SFB)
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• CNN	represents	parameters	as	a	set	of	matrices
• Parameters	in	FC	layers	exceed	bandwidth	of	
the	network

• Sufficient	factors	can	reduce	#	of	parameters
to	be	communicated

𝛻𝑊 = 𝑢𝑣A
Sufficient	Factors



Sufficient	Factor	Communication	(SFB)
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(1) Decouple	𝛻𝑊9 into	two	vectors	𝑢9 and	𝑣9
(2) Broadcast	𝑢9 and	𝑣9 to	all	other	peer	workers	and	

receive
(3) Reconstruct	 𝛻𝑊6 67-

B using	 𝑢6, 𝑣6 67-B and	updates.

Pengtao Xie,	et	al.	“Distributed	Machine	Learning	via	Sufficient	
Factor	Broadcasting." arXiv preprint	arXiv:1409.5705v2 (2015).



Sufficient	Factor	Communication	(SFB)
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• During	BP,	in	each	layer
– (gradient)	=	(error	message)	(activation)

• Broadcast	the	two	decomposed	vectors	to	
all	other	peer	workers

𝛻𝑊 =
𝜕ℒ
𝜕𝑊 = 𝐸6<-𝑎6A



Sufficient	Factor	Communication	(SFB)
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• Compared	to	traditional	server-client	on	FC	layer

– 7.1	times	faster	than	server-client,	since	P,K	<<	M,N	in	
modern	CNN

• Compared	to	Microsoft	Adam	on	FC	layer

– Adam	employs	SF	with	server-client	scheme
– 4	times	faster	than	Microsoft	Adam

P	:	#	of	workers
K	:	batch	size
M,	N	:	size	of	matrix

(P-1)2K(M+N)		vs		2PMN
SFB Server-client

(P-1)2K(M+N)		vs		PK(M+N)+PMN
SFB Microsoft	Adam



Structure-aware	Communication	Protocol
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• Intelligently	determines	optimal	communication	
method

Server-client

SFB

Microsoft	Adam



Staleness	Consistency	for	Data-
Parallelism
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• Make	parameter	update	consistent	across	the	
machines

• Existing	ways	are	either	safe/slow	(BSP),	or	
fast/risky	(Async)

• Need	“Partial”	synchronicity
• Need	straggler	tolerance

Ho,	Qirong,	et	al.	"More	effective	distributed	ml	via	a	stale	synchronous	parallel	
parameter	server." Advances	in	neural	information	processing	systems.	2013.

BSP Async

???



Middle	Ground
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• “Partial”	synchronicity
– Spread	network	comms evenly	(don’t	sync	unless	needed)
– Threads	shouldn’t	wait	– but	mustn’t	drift	too	far	apart!

• Straggler	tolerance
– Slow	threads	must	somehow	catch	up

(Credits:	Q.	Ho’s	NIPS	13	slides)



Middle	Ground

28
(Credits:	Q.	Ho’s	NIPS	13	slides)

How	do	we	realize	this?



Stale	Synchronous	Parallel	(SSP)
• Note:	x-axis	is	now	iteration	count,	not	time!
• Fastest/slowest		threads	not	allowed	to	drift	>S	
iterations	apart

• Threads	cache	local	(stale)	versions	of	the	
parameters,	to	reduce	network	syncing
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Stale	Synchronous	Parallel	(SSP)
• Protocol:	check	cache	first;	if	too	old,	get	latest	
version	from	network

• Consequence:	fast	threads	must	check	network	
every	iteration
– Slow	threads	only	check	every	S	iterations	– fewer	
network	access,	so	catch	up!
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SSP	provides	best-of-both-worlds
• SSP	combines	best	properties	of	BSP	and	Async

• BSP-like	convergence	guarantees
– Threads	cannot	drift	more	than	S	iterations	apart

• Asynchronous-like	speed
– Threads	usually	don’t	wait	(unless	there	is	drift)

• SSP	is	a	spectrum	of	choices
– Can	be	fully	synchronous	(S=0)	or	very	asynchronous	
(Sà∞)

– Or	just	take	the	middle	ground,	and	benefit	from	both!
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BWBP	+	SACP	+	SSP
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Evaluation

• Cluster	Configuration
– 4	x	16	core	2.1GHz	AMD	Operation	6272	CPUs
– 128	GB	of	RAM
– NVIDIA	Tesla	K20C	GPU	with	4799MB	memory
– 40GBe	network	for	connecting	NFS	and	workers
– Caffe with	CUDA	6.5	and	CUDNN	R2

• Datasets
– CIFAR-10
– ILSVRC2012	(AlexNet and	GoogleNet)
– ImageNet	22k	(with	other	frameworks)
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Classification	on	CIFAR-10
• 32	x	32	images	of	10	classes,	with	6K	images	per	class
• 3	CONV	+	1	FC	+	Softmax,	total	145,578	parameters
• 8	GPU	nodes

34

4x	Speedup 75%	top-1	accuracy



Classification	on	ILSVRC	2012	with	
AlexNet

• 256	x	256	x	3	images	of	1k	classes,	total	1.3M	images
• 5	CONV	+	2	FC	+	Softmax,	total	61.3M	parameters
• 8	GPU	nodes
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4.5x	Speedup 56.5%	top-1	accuracy



Classification	on	ILSVRC	2012	with	
GoogLeNet

• 256	x	256	x	3	images	of	1k	classes,	total	1.3M	images
• 22-layer	CNN,	total	5M	parameters
• 8	GPU	nodes
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4x	Speedup 67.1%	top-1	accuracy



Classification	on	ImageNet	22k
• 14,197,087	labeled	images	from	21,841	categories
• AlexNet-like	CNN:	5	CONV	+	2	FC,	total	120M	
parameters

• 7.9%	higher	performance compared	to	Le	et	al.’s	
framework
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DWBP	and	SACP

• Set	staleness	to	0	(i.e.	BSP)
• More	loss	when	increasing	the	number	of	nodes
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SSP	Consistency	Model
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Conclusion

• Present	Poseidon,	a	highly	scalable	and	efficient	
system	architecture	for	large-scale	deep	learning	
on	GPU	clusters.

• Poseidon	achieves	state-of-the-art	speedups	in	
accelerating	the	training	of	modern	CNN	
structures,	at	the	same	time	guarantee	the	
correct	convergence
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• Poseidon 
• Introduction to Petuum
• Distributed Wait-free Backpropagation
• Structure-Aware Message Passing Protocol
• Staleness Consistency

• CNTK
• 1-bit SGD
• Block Momentum

Outline
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Data	Parallel	Training
• Data-parallelism

– Distribute	each	mini-batch	over	workers,	then	aggregate
• Challenge

– Communication	cost
– Optimal	iff computation	and	communication	time	per	
mini-batch	is	equal	(assuming	overlapped	processing)

42



Data	Parallel	Training

• Two	approaches	
– Focusing	on	communication	than	computation
– Communicate	less	
– Communicate	less	often

43



Data	Parallel	Training

• Two	approaches	
– Focusing	on	communication	than	computation
– Communicate	less	→	1-bit	SGD
– Communicate	less	often

44



A	Key	Idea	of	1-Bit	SGD

• Inspired	by	Sigma-Delta	modulation	
– A	method	for	encoding	analog	signals	into	digital	
signals	using	only	a	single	1-bit DAC

– http://www.analog.com/en/design-center/interactive-
design-tools/sigma-delta-adc-tutorial.html
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A	Key	Idea	of	1-Bit	SGD

• Transmit	a	single-bit	update	for	each	
subgradient dimension
– e.g.	Instead	of	𝐺 = −.1, 0.3, … , 0.2 ,	use	𝐺 =
{−𝜏, 𝜏, … , 𝜏}

46

0 5 10 15 20 25 30 35

1-bit

float

Transferred	Gradient	(bits/value),	smaller	is	better



A	Pseudo	Code	of	a	Mini-batch	cycle	in	
a	Single	Node	in	Distributed	SGD
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1.	Receive	and	uncompress any	weight	update	messages	from	other	
compute	nodes	and	apply	them	to	the	local	replica	of	the	DNN
2.	Load	feature	vectors	and	supervision	targets	for	a	mini-batch
3.	Compute	a	sub-gradient	𝐺(N) by	Back-Propagation
4.	Aggregate	the	sub-gradient	in	the	gradient	residual	𝐺(O) = 𝐺(O) + 𝐺(N)
5.	Reset	the	message	map	𝑀
6.	For	each	element	𝑔6(O) of	𝐺(O):

• If	𝑔6(O) > 𝜏 then
• push	the	pair	{𝑖, +𝜏} to	the	message	𝑀
• Subtract	𝜏 from	residual:	𝑔6(O) = 𝑔6(O) − 𝜏

• Else	if	𝑔6(O) < 𝜏 then
• push	the	pair	{𝑖, −𝜏} to	the	message	𝑀
• Add	𝜏 to	the	residual:	𝑔6(O) = 𝑔6(O) + 𝜏

7.	Compress	𝑀 and	send	to	all	other	compute	nodes
8.	Apply	𝑀 to	the	local	replica	of	the	DNN

Strom,	Nikko.	"Scalable	
distributed	dnn	training	
using	commodity	gpu	
cloud	computing."	
INTERSPEECH 2015.



Data	Parallel	Training

• Two	approaches	
– Communicate	less	→	1-bit	SGD
– Communicate	less	often	→	Block	Momentum
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Block	Momemtum

• A	recent,	effective	parallelization	method
• Goal:	avoid	to	communicate	after	every	mini-
batch
– Run	a	block	of	many	mini-batches	without	
synchronization

– Then	exchange	and	update	with	“block	gradient”
• Problem:	taking	such	a	large	step	causes	
divergence

50
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cost

parameter space

Very slow at 
the plateau

Gradient 
is small

Stuck at 
local minima

Gradient
is zero

Without momentum With momentum

(Credits: Hung-yi Lee’s More Tips for Training Neural Network)

Gradient	Descent	with	Momentum
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Movement

Gradient

…

∇C(θ 0 )

∇C(θ1)
∇C(θ 2 )

∇C(θ 3)

θ 0

θ1

θ 2

θ 3

Start at position 𝜃^

Compute gradient at 𝜃^

Move to 𝜃- = 𝜃^ − η𝛻𝐶(𝜃^)

Compute gradient at 𝜃-

Move to 𝜃a = 𝜃- − η𝛻𝐶(𝜃-)

Original	Gradient	Descent
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Movement

Gradient

∇C(θ 0 )

θ 0 ∇C(θ1)

θ1 ∇C(θ 2 )

θ 2

∇C(θ 3)

θ 3

…

Start at position 𝜃^

Compute gradient at 𝜃^

Momentum 𝑣- = λ𝑣^ − η𝛻𝐶(𝜃^)

Compute gradient at 𝜃-

Momentum 𝑣^ = 0

Move to 𝜃- = 𝜃^ + 𝑣-

Momentum 𝑣a = λ𝑣- − η𝛻𝐶(𝜃-)

Move to 𝜃a = 𝜃- + 𝑣a

• vi is the weighted sum of all the previous gradient
(𝛻𝐶 𝜃^ , 𝛻𝐶 𝜃- ,⋯ , 𝛻𝐶 𝜃6,-

Gradient	Descent	with	Momentum



Gradient	Descent	with	Momentum

• A	form	of	accelerate	learning,	especially	in	the	
face	of	high	curvature,	small	but	consistent	
gradients,	or	noisy	gradients
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Data	Partition

• Full	training	set	𝐷 is	partitioned	into	𝑀 non-
overlapping	blocks

• Each	block	is	partitioned	into	𝑁 non-
overlapping	splits
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Blockwise Model-Update	Filtering	
(BMUF)

• Broadcast	a	global	model	𝑾f(𝑡 − 1) to	each	
worker

• Each	worker	computes	a	gradient	for	a	split.	If	
we	simply	aggregate	the	parameters	𝑾(𝑡) by	
N-averaging

• However,	in	the	parameter	server,	instead	of	
directly	using	𝑾(𝑡),	the	global	model	is	
updated	as	follows.	
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Blockwise Model-Update	Filtering	
(BMUF)

• Compute	𝑮(𝑡) to	denote	the	model-update	
resulting	from	block	𝐷)

• Then	calculate	the	global-model	update	∆(𝑡)

• Finally,	the	global	model	update	is
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𝑮 𝑡 = 𝑾 𝑡 −𝑾f(𝑡 − 1)

∆ 𝑡 = 𝜂)∆ 𝑡 + 𝜉)𝑮 𝑡 , 0 ≤ 𝜂) < 1, 𝜉) > 0

𝑾 𝑡 = 𝑾 𝑡 − 1 + ∆ 𝑡



Results
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Frank	Seide,	“CNTK:	Microsoft's	Open-Source	Deep-Learning	Toolkit”,	Microsoft	Research	Faculty	Summit	2016
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